Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Chem ; 65(4): 2836-2847, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1333869

ABSTRACT

The SARS-CoV-2 viral spike protein S receptor-binding domain (S-RBD) binds ACE2 on host cells to initiate molecular events, resulting in intracellular release of the viral genome. Therefore, antagonists of this interaction could allow a modality for therapeutic intervention. Peptides can inhibit the S-RBD:ACE2 interaction by interacting with the protein-protein interface. In this study, protein contact atlas data and molecular dynamics simulations were used to locate interaction hotspots on the secondary structure elements α1, α2, α3, ß3, and ß4 of ACE2. We designed a library of discontinuous peptides based upon a combination of the hotspot interactions, which were synthesized and screened in a bioluminescence-based assay. The peptides demonstrated high efficacy in antagonizing the SARS-CoV-2 S-RBD:ACE2 interaction and were validated by microscale thermophoresis which demonstrated strong binding affinity (∼10 nM) of these peptides to S-RBD. We anticipate that such discontinuous peptides may hold the potential for an efficient therapeutic treatment for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Peptides/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites/drug effects , Cells, Cultured , HEK293 Cells , Humans , Models, Molecular , Peptides/chemical synthesis , Peptides/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL